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Abstract. Fine particulate matter (PM2.5) remains a major air pollutant of significant public health concerns in urban areas. 10 

Long-term monitoring data of PM2.5 chemical composition and source-specific tracers provide essential information for 

identification of major sources as well as evaluation and planning of control measures. In this study, we present and analyze a 

ten-year data set of PM2.5 major components and source-specific tracers (e.g., levoglucosan, hopanes, K+, Ni, V, Al, Si) 

collected over the period of 2008-2017 in an urban site in Hong Kong, China. The time series of pollutants were analyzed by 

the Seasonal and Trend decomposition by Loess method and general least squares with Autoregressive-Moving average 15 

method. Bulk PM2.5 and all its major components displayed significant decline of varying degrees over the decade. PM2.5 was 

reduced by 40% and at -1.5 µg m-3yr-1. PM2.5 components that are predominantly influenced by local vehicular emissions 

showed the steepest decline, with nitrate by -84%, elemental carbon by -56%, and hopanes by -66%, confirming effective 

control of local vehicular emissions. For components that are significantly impacted by regional transport and secondary 

formation, they had a notably lower percentage reduction, with sulfate by -33% and organic carbon by -23%, reflecting 20 

complexity in their region-wide contributing sources and formation chemistry. Levoglucosan and K+, two tracers for biomass 

burning, differed in their reduction extent, with K+ at -60% and levoglucosan at -47%, indicating they likely track different 

biomass burning types. Dust components in PM2.5 also decreased, by -37% for Al and -46% for Si. The year of 2011 was an 

anomaly in the overall trend in having higher concentrations of PM2.5 and components than its adjacent years, and the long 

time series analysis attributed the anomaly to unusually lower rainfall associated with strong La Niña events. This ten-year 25 

trend analysis based on measurements exemplifies the utility of chemical composition data in support of an evidence-based 

approach for control policy formulation. 

1 Introduction 

Air pollution controls are of both local and global importance. Their effectiveness needs to be periodically reviewed for 

optimizing options to improve air quality and minimize environmental impacts. Particulate matter with aerodynamic diameter 30 

less than 2.5 µm, namely fine particulate matter (PM2.5), is a major air pollutant. It is a significant contributor to visibility 

reduction, climate change, and detrimental effects on human health (Yang et al., 2018; Zhao et al., 2013; Lippmann and Chen, 

2009; Ko et al., 2007; Kim et al., 2006; Cheung et al., 2005). Hong Kong, located in the Southern coastal part of China, is an 

important part of the Guangdong-Hong Kong-Macau Greater Bay Area (GBA), which includes the Pearl River Delta (PRD) 

region in Guangdong plus Hong Kong and Macao. The Hong Kong government has been assiduous in controlling the local 35 

emission via the Air Pollution Control Ordinance, in addition to cooperating with the neighboring Guangdong and Macao 

governments on formulating control policies to reduce air pollution emissions in the Greater Bay Area (GBA) (HKEPD, 2021). 

Ambient monitoring of criteria air pollutants plays an important role in verifying the effectiveness of control policies. For 
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example, from 2006 to 2018, large reductions have been documented for sulfur dioxide (-81%), nitrogen dioxide (-28%), and 

PM10 (-36%) in term of annual average concentrations (HKEPD, 2019; 2020), reflecting the benefits from a series of SO2, NO2 40 

and PM reduction measures (Table S8).  

PM2.5 was introduced as a criteria pollutant in Hong Kong in 2004 while its online monitoring preceded 5 years earlier at 

three sites (Tap Mun, Tung Chung, Tsuen Wan) in 1999. PM2.5 mass was added as a monitoring parameter in 2015 to the PRD 

Regional Air Quality Monitoring Network, which has included 23 sites in the GBA since 2015. The monitoring data indicates 

that while substantial progress has been made in lowering the pollution level of PM2.5, from 38 µg /m3 in 1999 to 15 µg /m3 in 45 

2020 (Figure 1a), the current level still notably exceeds the most updated the Air Quality Guideline of an annual average of 5 

µg/m3 as recommended by the World Health Organization (World Health Organization, 2021). This reality highlights the need 

for continued efforts to further identify specific emission sources such that effective management strategies can be formulated. 

Different from criteria gaseous pollutants, PM2.5 is a complex mixture containing inorganic components (e.g., sulfate, nitrate, 

and ammonium), elemental carbon (EC), organic carbon (OC) (consisting of tens of thousands of individual organic 50 

compounds), and metal oxides. The accumulation of PM2.5 pollution could come from direct emissions from human activities 

and biogenic sources and/or atmospheric formation processes. Additionally, changes in air quality could be masked by 

variations in atmospheric dispersion conditions on daily, seasonal, and annual bases. The multiple layers of complexity mean 

that PM2.5 mass concentration alone is insufficient to identify contributing sources or to attribute a reduction in PM2.5 to a 

particular control measure. This is evident from Figure 1b, which shows the percentage changes vary significantly among 55 

PM2.5 components, using the data set to be discussed in this work as an illustration. 

 

Figure 1. (a) Trend of annual average PM2.5 in Hong Kong for the period of 1999-2020 and the PRD regionwide average PM2.5 during 2015-
2020. The regionwide annual PM2.5 is the average of 23 monitoring stations in the PRD Regional Air Quality Monitoring Network, including 
three stations located in Hong Kong. The shaded period (2008-2017) has available PM2.5 major components and select source tracers at 60 
Tsuen Wan (TW), an urban site in Hong Kong, with the yellow dots representing gravimetrically determined PM2.5 concentrations from the 
collected filter samples at TW. (b)The percentage changes of PM2.5 and its major composition at TW using 2008 as the base year. 

The speciated analysis of PM2.5, in particular the measurement of source-specific marker species, provides valuable 

information for understanding the sources, formation, and evolution of the PM pollution. Long time-series of such chemically 

specific data would, on the other hand, potentially allows the discernment of meaningful trends that are not apparent in one-65 

time field projects, as well as establishes long-term knowledge about representative urban/regional aerosol chemistry. 

However, long-term measurements of PM2.5 species in China are very limited, more so for the source-specific markers. Our 

research team launched a filter-based PM2.5 monitoring program in mid-2007 at Tsuen Wan (TW), an urban location, and has 

maintained the operation since then. Our monitoring program adopts a regular sampling schedule of one 24-h sample every 

six days to ensure temporal representativeness. High-volume samples were also collected to allow sufficient aerosol materials 70 
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for analysis of organic source markers (e.g., hopanes for vehicular emissions, and levoglucosan for biomass burning 

emissions). Starting from 2011, Hong Kong Environmental Protection Department (HKEPD) established a regular PM2.5 

chemical speciation monitoring network, with TW as one of its monitoring stations and adopting a 1-in-6-day sampling 

schedule as well (e.g., Yu et al., 2012). The field sampling, laboratory analyses, quality check/quality assurance, and data 

validation were conducted according to the same set of standard operating procedures which are in reference to those 75 

recommended by the US Environmental Protection Agency (Chow and Watson, 1998; USEPA, 2016). The laboratory analyses 

of PM2.5 mass and major components (water-soluble ions, OC, EC, and elements) were performed by our research team except 

for samples from the year of 2015, which were analyzed by the Desert Research Institute (Chow et al., 2016). This set of filter 

samples allows us to observe the long-term trend of PM2.5 major components and source tracers and to examine variations in 

aerosol sources affecting Hong Kong urban atmosphere for the 10-year period of 2008-2017.  80 

Studies of PM2.5 speciation data derived using a consistent sampling and analysis methodology over a period of as long 

as a decade and as early as 2008 are few and far between in China and elsewhere in Asia. A few multi-year studies were 

documented in the literature. One study covered a rural site (Wanqinsha) in the GBA in the fall and winter seasons over 6 

years (2007–2012) (Fu et al., 2014). In the second study, PM2.5 speciation covered 6 sites in Foshan, a populated city in the 

GBA, in winter and summer seasons over 7 years (2008–2014) (Tan et al., 2016). In the third study, PM2.5 samples were 85 

collected in urban Beijing from 2011 to 2015 (Lang et al., 2017). Unfortunately, these long-term studies did not follow regular 

sampling schedules throughout the annual cycle. Some months of the year were not sampled, biasing their temporal 

representativeness in tracking long-term trends of PM2.5 composition. Recently, the Chinese Central Government set up the 

National Aerosol Composition Monitoring Network in 2017 with a view to evaluating the effectiveness of its “2+26” strategy 

for improving air quality (Chen et al., 2019; Dao et al., 2019). This nationwide monitoring program is expected to generate 90 

high quality PM2.5 composition data in the long run. Yet, a long-term data set is not available due to the limited operating 

period. 

In this work, we analyzed the trends of PM2.5 and its major components and individual source marker molecules/elements 

by the Seasonal and Trend decomposition with LOESS (STL), a robust method for extracting trend components from 

concentration time series (Cleveland et al., 1990), and cross-compared the results with non-parametric Mann-Kendall test and 95 

Sens’s slope. The objectives are to quantify the ten-year variations in PM2.5 chemical composition and to characterize how 

major local and regional sources impacting PM2.5 pollution in Hong Kong have varied in the decade. The aim of this work is 

to provide a well-scrutinized long-term data set of PM2.5 chemical composition and a sound analysis of source implications for 

an urban location in South China to support studies of control measure evaluation and formulation. 

2. Data and method 100 

2.1 PM2.5 chemical speciation data 

PM2.5 filter samples were collected on a 24-hour basis (midnight to midnight) once every 6 days from 2008 to 2017 at 

Tsuen Wan (TW, 22o37’18N, 114o11’50E), an urban air quality monitoring station (AQMS) in Hong Kong. TW is a station 

surrounded by residential and commercial buildings and located about 3.3 km north to the city’s international shipping port 

(Kwai Chung and Tsing Yi Container Terminals).  Both high-volume and mid-volume samplers were equipped at the station. 105 

The high-volume sampler (Andersen Instrument, Smyrna, GA, USA) was loaded with a pre-baked 20 x 25 cm quartz fiber 

filter and operated at a flow of 1.13 m3 min-1. Two types of mid-volume samplers were used in the course of ten years. From 

2008 to 2010, a RAAS four-channel mid-volume sampler (Andersen Instrument, Smyrna, GA, USA) was operated and the 
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configuration of the four channels was as below: Channels 1 and 4 sampling at 16.7 L min-1 and loaded with one 47-mm Teflon 

filter and one 47-mm quartz filter, and Channels 2 and 3 sampling at a flow rate of 7.3 L min-1 and loaded with one  47-mm 110 

nylon filter and one 47-mm quartz filter. From 2011 to 2017, two mid-volume samplers (Partisol R&P, Model 2025, Albany, 

NY, USA) were operated side-by-side to collect one Teflon and one quartz fiber filter at 16.7 L min-1. A total of 592 sets of 

filter samples were collected, each set consisting of one 20x25cm filter and multiple 47-mm filter samples for a sampling day.  

A suite of chemical speciation analysis was conducted on the collected sample filters (Table 1). Specifically, the 47-mm 

Teflon filters were used to determine the PM2.5 mass concentrations by gravimetric analysis and the trace element 115 

concentrations by energy dispersive X-ray fluorescence spectrometry (XRF). The Nylon filters from 2008-2010 and the quartz 

filters from 2011-2017 were used to quantify the concentrations of major ions by ion chromatography (IC). Organic carbon 

(OC) and elemental carbon (EC) were measured by a thermal/optical transmittance (TOT) method. Concentrations of 

saccharides were analyzed by high-performance anion-exchange chromatography coupled with pulsed amperometric detection 

(HPAEC-PAD) (Kuang et al., 2015). Non-polar organic compounds, including alkanes, polycyclic aromatic hydrocarbons, 120 

and hopanes, were quantified by a method coupling in-injection port thermal desorption gas chromatography with mass 

spectrometry (TD-GC/MS) (Ho and Yu, 2004; Ho et al.,2008).   

Data validation on the PM2.5 speciation was carried out at three levels according to the publication “Guideline on Speciated 

Particulate Monitoring” prepared for the USEPA by Chow and Watson (1998).  Level I validation mainly consists of flagging 

measurements that deviate from procedures through reviewing sampling log sheets and field quality check records and 125 

identifying invalid values. Level II validation checks the internal consistency among data from different analyses, involving 

the following: (1) comparing a sum of measured chemical species vs. PM2.5 mass concentrations, (2) comparing total sulfur 

by XRF vs. sulfate by IC, (3) comparing total potassium by XRF and soluble potassium by IC), (4) calculating anion/cation 

balances, and (5) examining time series data to identify and investigate outliers. Level III validation is part of the data 

interpretation process, mainly focusing on identification of unusual values through parallel consistency tests with other 130 

independent datasets.  

Details of analytical procedures and data validation are documented in our previous studies (Huang et al., 2014; Chow et 

al., 2022) and in a series of project reports (Yu et al., 2012; 2013; 2014; 2015; Yu and Zhang, 2017; 2018; Chow et al., 2016), 

which are available at: http://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html. See Yu et al. 

(2022) for dataset access details.  135 

 
Table 1. PM2.5 and list of components targeted for trend analysis and their measurement methods 

Species Measurement method Source characteristics 
PM2.5 Gravimetry1   
OC 
 

Thermal/optical analysis2 Primary emissions and Secondary formation 
with VOCs as direct precursors 

EC Combustion sources 
Sulfate Ion chromatographic analysis of aerosol water 

extracts3 
Secondary with SO2 as direct precursor 

Nitrate Secondary with NOx as direct precursor 
Ammonium Secondary, particle presence in close 

association with sulfate and nitrate 
K+ Biomass burning, sea salt, dust 
Al, Si Energy dispersive X-ray fluorescence 

spectrometry3,4 
Soil dust 

Ni, V Residual oil combustion 
Pb, Cu, Zn Coal combustion, metal industries 
Hopanes Thermal desorption-GC/MS5,6 Fossil fuel uses such as vehicular emission, 

residual oil burning 
Levoglucosan High-performance anion-exchange chromatography 

coupled with pulsed amperometric detection 7 
Biomass burning 

1 USEPA, 2016; 2 Chow et al., 2007; 3 Huang et al., 2014; 4 Watson et al., 1999; 5 Ho and Yu, 2004; 6 Ho et al., 2008; 7 Kuang et al., 2015. 
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2.2 Gaseous pollutant and meteorological parameter data  

Criteria gaseous pollutant data (CO, SO2, O3, and NOx) and meteorological parameters at TW are from the network of air 140 

quality monitoring station operated by the Hong Kong Environmental Protection Department (HKEPD). The criteria gaseous 

pollutant data are available from the HKEPD Environmental Protection Interactive Centre 

(https://cd.epic.epd.gov.hk/EPICDI/air/download/) while the meteorological parameters can be retrieved from the HKUST 

ENVF Atmospheric & Environmental database (http://envf.ust.hk/dataview/gts/current/). The decadal time series of 

temperature, relative humidity (RH), wind speed and direction, and precipitation at the site are summarized in Section S1 in 145 

supplementary document. 

2.3 Seasonal and trend decomposition with LOESS method (STL) 

For the evaluation of the overall trend of time series independently of seasonal influence, the Season and Trend 

decomposition (STL) was adopted to decomposes a time series (𝑌௩) into three components: the trend component (𝑇௩), the 

seasonal component (𝑆௩) and the remainder (𝑅௩) in an additive or a multiplicative manner, as per Eq. 1a and Eq. 1b. (Cleveland 150 

et al., 1990).  

𝑌௩ = 𝑇௩ + 𝑆௩ + 𝑅௩  (1𝑎) 

𝑌௩ = 𝑇௩ × 𝑆௩ × 𝑅௩ (1𝑏) 

The STL algorithm is performed via locally weighted regression (LOESS) under two iterative loops. In comparison with other 

time series decomposition techniques, such as the simplest Moving Averages (MA) method (Molugaram and Rao, 2017), the 155 

STL method has more flexibility in parameter tuning as well as higher robustness to counterpart the influences from outliers. 

A detailed description about its algorithm is provided in Section S2 in the supplementary information. The STL method has 

been readily implemented and widely tested in most programming languages such as R and Python. In this study, we utilized 

the STL function in the stlplus package in R for the following calculation. 

Before applying the STL method, we manually inspected the data and removed data points exceeding the upper quartile 160 

by 3 times of interquartile range (i.e., X75% + 3(X75% - X25%)) to avoid influence of extreme concentrations on the trend slope 

(Singh et al., 2021; Bigi and Ghermandi, 2014). The concentration data were found log-normally distributed in Q-Q plots as 

shown in Figures S5 & S6. Thus, log-transformation and monthly averaging were applied to create a normally distributed time 

series with even time interval to cope with the assumptions of the STL model. 

2.4 Generalized Least Squares with Autoregressive-Moving Average (GLS-ARMA) model 165 

 The trend curves from STL method are often too irregular to be described verbally or quantitatively. This prompts us to 

seek a method that allows calculation of an overall changing rate for the trend component for further analysis. When dealing 

with time series data with autocorrelation (i.e., the current value (𝑌௩) depends on its lagged values (𝑌௩ି௛)), generalized least 

squares (GLS), instead of ordinary least squares (OLS), is more suitable for the quantification of changing rate of the time 

series. In GLS, the covariance matrix (and so the residuals) can be estimated by an Autoregressive-Moving-Average 170 

(𝐴𝑅𝑀𝐴(𝑝, 𝑞)) model. Specifically, the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model assumes that the current value (𝑋௧) is influenced by its p-order of 

lagged values (𝑋௧ି௛) and q-order of lagged residuals (𝜀௧ି௜) as shown in Eq. 2.  

𝑋௧ = ෍ 𝜙௛𝑋௧ି௛

௣

௛ୀଵ

+ 𝜀௧ + ෍ 𝜃௜𝜀௧ି௜

௤

௜ୀଵ

 (2) 

The determination of p and q in an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model is achieved by minimizing model selection criteria such as Akaike’s 

Information Criterion (AIC) and Bayesian Information Criterion (BIC). A model with a smaller AIC or BIC value is deemed 175 
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more likely to generate the data that we obtain, while taking both probability likelihood and model simplicity into 

consideration. Despite the differences in assumptions, theoretically AIC and BIC give similar results in most cases (Shumway 

and Stoffer, 2017). In our study, we calculated AIC, AICc (a bias corrected AIC), and BIC. As tabulated in Table S1 in in the 

supplementary information, these criteria indictors show no significant difference in terms of the parameter selection outcomes. 

Thus, hereafter only BIC values are reported when determining the slope of each GLS-ARMA model analysis. The details of 180 

the methodology of this hybrid STL-GLS-ARMA method are provided in the Section S3 in supporting document. 

2.5 Comparison with other trend analysis methods 

Additional trend analysis methods were explored to cross-validate the results from the GLS-ARMA method. First, Sen’s 

slope method (Wilcox, 2017), a non-parametric method, was performed on the same dataset to calculate the changing rate. In 

Sen’s slope method, we first run Mann-Kendall test to see whether the overall trend of the annual averages is monotonic. Then 185 

the median of the slopes for all pairwise data points are computed and defined as the Sen’s slope. Second, an exponential trend 

estimation was computed using Compound Annual Growth Rate (CAGR) for each pairwise combination of annually averaged 

values using Eq. (3).  

𝐶𝐴𝐺𝑅 (%) = ቆ
𝑋௧௡

𝑋௧଴

ቇ

ଵ
௧೙ି௧బ

× 100% (3) 

where Xtn and Xt0 is the annual averaged time series at time tn and t0, respectively.  Like Sen’s slope method, the overall trend 190 

of a species is represented by the median value of all the CAGR results. Testing the agreement between the linear and non-

linear approaches helps in validating the overall trend analysis results. Details of CAGR results are provided in the Section S7 

of supporting information. 

3. Results and discussion 

3.1 PM2.5 composition 195 

PM2.5 and its major components collected over the decade are displayed in time series of monthly averages in Figure 2a 

and annual averages in Figure 2b. The time series of individual samples are provided in Figure S3. Under influence of the 

monsoon winds, the four seasons in Hong Kong are well distinguished in their meteorological characteristics, with summer 

and winter being the two longest seasons and each lasting approximately four months. The four seasons are approximately 

spring from 16 Mar to 14 May, summer from 15 May to 15 Sep, fall from 16 Sep to 15 Nov, and winter from 16 Nov to 15 200 

Mar (Chin, 1986). Under the influence of the Asian monsoon, the northly prevailing winds carry dry and polluted northern 

continental air masses to Hong Kong in wintertime whereas prevailing southerly and southeasterly monsoon winds in 

summertime and bring largely clean marine air masses from South China Sea or Northwest Pacific Ocean. As a result, PM2.5 

and other pollutants show distinct winter-summer contrast in their source origins and in concentration levels (Yu et al., 2004). 

In summer, local emissions have dominant influence while in winter, the regional/superregional pollution significantly elevated 205 

air pollutant levels. We thus show separate time series for summer and winter seasonal average PM2.5 chemical composition 

in Figures 2c and 2d and discussion of the source trend according to seasons of summer and winter provides a more direct 

understanding of source variations over the years. Spring and fall, being two short and transient seasons, display more variable 

and mixed influences from both local and regional/superregional sources (Figure S4). Their time series are less useful for 

tracking decadal source variations, therefore not discussed in this paper.   210 

As shown in Figure 2, an overall decline trend is clearly seen in both bulk PM2.5 and its major components over the decade 
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of 2008-2017. Sulfate and organic matter (OM) remain to be the top two dominant PM2.5 components throughout the decade 

and for both winter and summer seasons. Significant monthly variations are also evident, with highest concentrations in the 

winter months and the lowest in the summer months. The highest winter month average could be more than double the lowest 

summer average concentration in a same year, clearly indicating the significant contribution of regional/superregional pollution 215 

to PM2.5 in Hong Kong. Comparing Figures 2c and 2d, we see that the mass reductions in summer season over the decade are 

much less in comparison with those seen for the winter, however, a continuous decline in EC is clear in the decade-long time 

series of the summer averages, indicating success in controlling local EC sources (i.e., vehicular emissions). A quantitative 

description of 10-year trends for PM2.5, its major components and source tracers will be provided in the ensuing sections.  

 220 

Figure 2. Time series of PM2.5 chemical composition from 2008 to 2017 in the form of (a) monthly averages, (b) annual average, (c) winter 
seasonal averages, and (d) summer seasonal averages. In the legends, “Salts” includes Na+ and Cl-; “Crustal” represents crustal materials, 
computed to be 1.89*Al+2.14*Si+1.4*Ca+1.43*Fe; and “Tracers” includes elements other than Na, Cl, S, K, Al, Si, Ca, Fe. OM refers to 
organic matter and computed to be 1.4*OC. 

For a simple illustration of the 10-year change in PM2.5 chemical composition, the average chemical compositions in the 225 

starting and the ending year of the decade are compared in Figure 3. On the annual average basis, the top four major components 

remain to be the same, i.e., OM, sulfate, ammonium, and nitrate, collectively accounting for a comparably ~84% of PM2.5 in 

2008 and 2017, despite 10 years apart. Among the four top contributors, OM has gained a few percent while nitrate has been 

reduced by a few percent in proportional importance. The 10-year compositional changes are more prominent in the seasonal 

averages. For winter PM2.5, the relative importance of OM increased (up from 31% in 2008 to 40% in 2017) while the relative 230 

abundance of nitrate decreased (down from 7% to 4%), as well as EC (down from 7.8% to 5.3%).  For summer PM2.5, the most 
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significant compositional changes are also OM (up from 32% to 44%), EC (down from 16.7% to 8.5%), and nitrate (down 

from 4.3% to 1.7%).  The proportional decrease of EC was most notable, reflecting the effectiveness of local vehicular 

emissions control measures. 

 235 

Figure 3. Comparison of average PM2.5 compositions between the starting year (2008) and the ending year (2017) of the decade. In each 
year, three averages are shown, corresponding to annual, winter, and summer, and the donut size is proportional to the PM2.5 concentration.  

3.2 Annual trend analysis 

Previous studies that examined annual trend of pollutants for evaluation of pollutants reduction in Hong Kong adopted a 

simple method of comparing annual average values (HKEPD, 2020; Zhang et al., 2018; Lu et al., 2013; Yuan et al., 2013). 240 

While this approach avoids the autocorrelation issue ─ the lag value of variables (Yt-h) influences the current value (Yt) in time 

series─ it would suffer increased bias due to the sacrifice of the sample size for estimation. In comparison, STL is a more 

robust method for extracting trend components from concentration time series (Cleveland et al., 1990), with the autocorrelation 

issue accounted for by GLS-ARMA (Shumway and Stoffer, 2017). The STL-GLS-ARMA method has been adopted in a few 

studies analyzing air pollutant trends (e.g., Anttila and Tuovinen, 2010; Bigi and Ghermandi, 2014). It is found that that STL-245 

GLS-ARMA has the advantage of retaining more degree of freedom on sample population and thus producing a more accurate 

estimate than the ordinary least squares (OLS) method. 

We applied STL-GLS-ARMA to the monthly average concentrations of PM2.5 mass and individual species, including 

major components (SO4
2-, NO3

-, NH4
+, OC, and EC), and source-specific molecular or elemental tracers (i.e., K+, Al, Si, V, 

Ni, Pb, Zn, Cu, hopanes, and levoglucosan), as well as the routinely monitored criteria gaseous pollutants (CO, SO2, NOx and 250 

O3)  (Figure 4). Table 2 summarizes the slopes obtained from the GLS-ARMA, Sen’s slope method, and percentage change of 

each species over 2008-2017, together with the annual average concentration data in 2008 and 2017. The results from both the 

slope-determining methods were in good agreement for all the PM2.5 species. The GLS-ARMA trend slopes are significantly 

less than zero at a p level of <0.001 for all PM2.5 measurement parameters, except for V and levoglucosan, which are significant 
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at a higher p level (0.01 and 0.05, respectively). For the Sen’s slopes, they are less than zero at a lower p level of 0.01 for most 255 

species and at p = 0.05 for levoglucosan, and not significant at p >0.05 for V and hopanes. Such differences reflect the 

superiority of the GLS-ARMA method arising from retaining more degrees of freedom on the sample population. Thus, we’ll 

adopt the GLS-ARMA slopes in commenting the ten-year changing rate in later discussion.  

From the results of STL-GLS-ARMA method, a declining rate of 1.5 µg m-3 per year was estimated for the PM2.5 mass. 

This decline was significantly attributed by the top two major components, namely sulfate accounting for 24% (Slope: -0.36 260 

µg m-3 yr-1) and OM 17% (-0.18*1.4 = -0.25 µg m-3 yr-1), respectively. Ammonium, nitrate, and EC decreased in a similar rate 

in mass concentration unit (NH4
+, NO3

-, EC: -0.12, -0.17, -0.17 µg m-3 yr-1), they accounted for a similar percentage at around 

8.0-11% each and a combined 31% of the overall PM2.5 reduction. Meanwhile, other components such as biomass burning 

markers (K+ and levoglucosan), industrial and coal combustion tracers (Zn and Pb), crustal materials (Al, Si, and Ca), 

altogether explain the remaining 28% of PM2.5 depletion. Note that the tracer species only account for a minute amount of 265 

mass, however, they are indicative of other unmeasured PM2.5 components co-emitted with these sources.  

The percentage changes during the decade are calculated using the annual average in 2008 and 2017 and listed in Table 

2. With the GLS-ARMA model fitted data, we can also calculate the percentage changes. Comparing the two approaches, the 

GLS-ARMA method yields higher percentage drops in K+, NO3
-, Al, Si, Pb, and Cu than those calculated using annually 

averaged data. This could be explained by the different concentration levels fitted by GLS-ARMA model. The underestimated 270 

concentration in 2017 by GLS-ARMA results from the flatten variation in the later years (Figure 4), hence the higher 

percentage changes in these species. This problem was less obvious for species with smoother declines such as SO2, NOx, OC, 

EC, V, Ni, and hopanes. Therefore, the differences in percentage change between two methods helped on identifying the 

different changing characteristics along the time series. 

The annual percent change rates computed using CAGR, summarized in Figure S11 and Table S5, show a good agreement 275 

with those from the linear approaches (i.e., GLS-ARMA and Sen’s slope). In general, the exponential approach of the CAGR 

method estimates a larger decline than the GLS-ARMA method. The maximum difference occurs with NO3
- (-10%). The 

relative constant concentration levels in the later years were particularly observed in NO3
_, which would imply a faster 

reduction in an exponential variation model and thus result in a larger discrepancy. The absolute differences for all the other 

species are less than 5%. For simplicity, we confine trend discussion to results from the linear approaches.  280 

The 10-year percentage change in PM2.5 is -40%. Sulfate and ammonium, with nearly identical decrease trajectories due 

to their close chemical linkage, have their percentage drops closely matching that of bulk PM2.5 (Figure 1b and Table 2). Other 

major components, however, differ in their percentage reductions from that of bulk PM2.5, with the reduction in nitrate (-66%) 

and EC (-60%) exceeding while OC (-23%) falling below that of bulk PM2.5. Such results reveal the effectiveness of control 

measures in lowering EC and sulfate and the increasing importance of OC in addressing PM2.5 pollution in the coming years. 285 
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Figure 4. (a) Gaseous and (b) PM2.5 pollutant data over 2008-2017: monthly concentrations (blue), trend component (cyan), and the slope 
line of trend determined by GLS-ARMA method (red). Note that the concentrations of hopanes and levoglucosan are in ng m-3, while the 
others are in g m-3. 290 
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3.3 Trend analysis of winter and summer data 

As discussed in Section 3.1, PM2.5 levels and dominant sources are distinctly different in winter and summer. The two 

seasons merit separate analysis of their ten-year trends. This is further supported by correlation and hierarchical clustering 

analysis of year-by-year data, the results of which are shown in Figure 5 using 2008 and 2017 as examples. Figure 5 reveals 

that the measurement variables segregate into two clusters marked in black and pink linkage lines, respectively, and they 300 

broadly correspond to one group of pollutants known to be significantly influenced by regional/super-regional sources (e.g., 

OC, sulfate, nitrate, NH4
+, K+, Pb, Zn, Cu) and a second group of species with dominant contributions from local sources (i.e., 

NOx, EC, hopanes, Ni, and V). The regional sources have strong seasonality under the influence of the monsoon winds. 

 

Figure 5. Correlation matrix of gaseous and particulate pollutants with hierarchical clustering results at 2008 (left) and at 2017 (right). 305 
Clusters: pink – local sources; black – regional sources. 

Figure 6 shows the 10-year variations of the seasonal average concentrations of PM2.5 and select components for winter 

and summer. The season-specific Sen’s slopes are listed in Table 3, expressed in both mass concentration change rate per year 

and percent change rate per year. The latter unit allows a direct comparison of relative source strength changes of local and 

regional sources by removing the impact of meteorological factors (e.g., boundary layer height) on ambient concentrations. 310 

Seen in Table 3, the Sen’s slope for bulk PM2.5 is significantly different seasonally, at -2.0 µg m-3 yr-1 in winter vs. -0.67 µg 

m-3 yr-1 in summer, while the percentage decline rates are comparable, at -3.9% yr-1 in winter and -3.7% yr-1 in summer. In 

align with the species segregation revealed in Figure 5, the group of regional species shows significantly larger decrease rates 

in mass concentration in winter than in summer, but the group of local species (EC, V, and Ni) displays comparable Sen’s 

slope in both seasons. It is worth noting that summer OC does not show a discernable increase or decrease trend over the 315 

decade, but winter OC shows a decrease trend with a slope of -0.45 µgC m-3 yr-1 (Figure 6). Such a stark contrast indicates a 

significant seasonal difference in OC sources and their underlying driving factors. This also implies that measures to lower the 

OC contribution in PM2.5 must consider the strong seasonality of its sources.  

Considering the diverged seasonality among major components and source tracers, we individually examine in the 

subsequent sections the trend characteristics of the major PM2.5 constituents and important sources that have effective tracer 320 

data.   
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Figure 6. Ten-year variations of seasonal average concentrations of PM2.5 and select components for the winter (blue) and summer (orange) 
from 2008 to 2017. Red lines indicate the Sen’s slope, blue dashed lines indicate the 95% confidence intervals.  

 325 
Table 3 – Summary of the seasonal variation estimated by Sen’s slope.  

Species 
Sen’s slope (mass concentration)1 Sen’s slope (percent change)2 

Unit Winter Summer Winter Summer 
Gaseous pollutants   
CO g m-3 yr-1 +8.9 +21 +1.1% +4.4% 
SO2 g m-3 yr-1 -1.0* -0.98*** -3.9%* -2.8%*** 
NOx g m-3 yr-1 -4.4** -3.7** -3.3%** -3.1%** 
O3 g m-3 yr-1 +1.6* +0.56 +4.9%* +2.6% 
PM2.5 and its components   
PM2.5 g m-3 yr-1 -2.0* -0.67* -3.9%* -3.7%* 
SO4

2- g m-3 yr-1 -0.50 -0.17 -3.8% -3.5% 
NO3

- g m-3 yr-1 -0.38** -0.049* -8.4%** -6.3%* 
NH4

+ g m-3 yr-1 -0.16* -0.019 -3.2%* -1.4% 
OC3 gC m-3 yr-1 -0.45 0.0067 -3.6% +0.16% 
EC gC m-3 yr-1 -0.19** -0.18** -6.2%** -5.8%** 
Al ng m-3 yr-1 -15** -5.1 -5.3%** -4.8% 
Si ng m-3 yr-1 -35** -8.5* -7.0%** -4.1%* 
V ng m-3 yr-1 -1.2* -1.1* -7.0%* -3.4%* 
Ni ng m-3 yr-1 -0.37* -0.42* -5.9%* -4.7%* 
Pb ng m-3 yr-1 -7.0** -0.91* -7.7%** -7.8%* 
Zn ng m-3 yr-1 -18** +2.6 -6.6%** +4.4% 
Cu ng m-3 yr-1 -1.6 -0.17 -5.8% -2.3% 
K+ ng m-3 yr-1 -62** -11 -7.5%** -5.5% 
Hopanes ng m-3 yr-1 -0.067** -0.041** -6.4%** -8.1%** 
Levoglucosan ng m-3 yr-1 -4.7 -1.8 -3.9% -10% 

1Asterisks in the table denote that the slope significantly differs from zero: * p < 0.05, ** p <0.01, *** p <0.001. 
2The Sen’s slopes in these two columns are obtained on normalized concentrations against those in 2008, thus providing percentage 
change rates relative to 2008, with the unit of % yr-1. 
3The Sen’s slope for wintertime OC is significant at a p level of 0.11. 330 
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3. 4 Secondary inorganic aerosol components 

The three secondary inorganic aerosol components, namely, sulfate, nitrate, and ammonium, are constantly prominent 

components of PM2.5 and make up 43-47% of PM2.5 mass over the decade. Their ambient abundances exhibit a strong 

seasonality, with the winter concentrations more than double the summer concentrations. Seasonally, the wintertime levels 

changed by -0.50, -0.38, and -0.16 μg m-3 yr-1 in mass concentration change rate and at -3.8%, -8.4%, and -3.2% yr-1 in 335 

percentage change rate for sulfate, nitrate, and ammonium, respectively. The summertime level changed by -0.17, -0.05, and 

-0.02 μg m-3 yr-1 in mass concentration change rate and at -3.5%, -6.3%, and -1.4% yr-1 in percentage change rate for sulfate, 

nitrate, and ammonium, respectively (Table 3). They are significant drivers of PM2.5 decline. 

While the direct precursor for sulfate is SO2, the reduction of SO2 does not necessarily translates to proportional reduction 

in sulfate, as various oxidants (e.g., hydroxyl radical, hydrogen peroxide, ozone, etc.) participate in the oxidation formation of 340 

sulfate from SO2 and the role of each oxidant is highly dynamic in both temporal and spatial scale (e.g., Xue et al., 2019). 

Nevertheless, it is informative to compare the changing rates of SO2 and sulfate. Over the decade, sulfate dropped by 40% in 

annual average concentration, lagging behind the 62% drop recorded for SO2 (Table 2). A close examination of the 10-year 

time series of monthly concentrations of SO2 and sulfate side by side (Figure 7) shows temporally uneven reduction. The 

steepest drop in SO2 occurred in 2008-2009 (from 28.4 to 15.6 μg/m3, a reduction of 45%), following the mandated switch to 345 

ultra-low S (<0.005%by weight) for all commercial and industrial processes in 2008. During the same period, sulfate dropped 

by 22% from 11.0 μg/m3 in 2008 to 8.6 μg/m3 in 2009. Between 2009-2014, both SO2 and sulfate dropped by a same small 

percent (~4%) and varied in a narrow range of 14.6-16.2 μg/m3 for SO2 and 8.66-9.03 μg/m3 for sulfate. Between 2015-2017, 

the introduction of SO2 reduction measures targeting power plants and shipping industry led to a decrease of SO2 by 22% 

(from 13.8 to 10.7 μg/m3) while sulfate only dropped by 11% (from 7.45 to 6.60 μg/m3) (Figure 7). Evidently, the discrepant 350 

changing rates of ambient SO2 and sulfate confirms that sulfate reduction is generally not proportional to local SO2 reduction 

because of nonlinear formation chemistry of sulfate and a significant contribution to sulfate from regional transport (Chen et 

al., 2021; Chow et al., 2022).  

The very origin of PM2.5 NH4
+, i.e., reaction of ammonia with sulfate aerosol, dictates its close association with sulfate. 

This relationship is expectedly confirmed in the excellent correlation of NH4
+ with sulfate in all the years (Figure 5). As NH3 355 

is generally abundantly supplied, the variation of NH4
+ closely tracks that of sulfate, as confirmed in our dataset.  
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Figure 7. Ten-year variation of monthly SO2 and sulfate concentration. The significant SO2 emission control measures implemented in Hong 
Kong are indicated in the top plot. The unit of concentration is µg m-3. 

It is well established that PM2.5 nitrate is a secondarily formed product from NOx oxidation (e.g., Griffith et al., 2015).  360 

Like the formation of sulfate, the involvement of multiple oxidants (e.g., hydroxy radical, O3) creates significant complexity 

so that a proportional relationship is not expected between variations of NOx and nitrate (Xue et al., 2014a).  Additionally, 

atmospheric physical conditions, such as temperature and RH, also strongly influence the partitioning of nitrate between gas 

and particle phase. Comparing the reduction rates of NOx and nitrate, we note that over the decade nitrate dropped by 66%, 

higher than the reduction rate of 36% for NOx (Table 2). While the deviation from proportionality reflects the nonlinear 365 

formation chemistry of nitrate, the higher reduction rate in nitrate is seemingly counter-intuitive. Unlike sulfate, which 

predominantly exist in the particle-phase, nitrate could be either present as nitric acid in the gas phase or as ammonium nitrate 

partitioning between gas-particle phases. Additional, nitrate could significantly partition to the coarse particles (PM2.5-10) (Xue 

et al., 2014b). Thus, PM2.5 nitrate, mainly existing in the form of ammonium nitrate, only represents a fraction of the total 

nitrate. This provides possibility for higher PM2.5 nitrate reduction rate than its precursor NOx. Zhang et al (2018) examined 370 

the PM10 chemical speciation data in Hong Kong that spans 18 years (1998-2015) and found nitrate in PM10 increased from 

2002 to 2011 then decreased afterwards. Such an observation indirectly indicates that the significant presence of nitrate in 

coarse PM could lead to divergent trends of nitrate in PM10 and PM2.5. A more detailed consideration with the aid of modeling 

would be needed in order to reveal the variation extent of total nitrate and the distribution of different nitrate forms. Such an 

exploration requires efforts going beyond the current project, thus not pursued. 375 

3.5 Components dominated by Local emissions – Vehicular and Shipping emissions 

It has been recognized that on-road vehicles and marine vessels are two major local emission sources for ambient PM2.5 

in Hong Kong (Guo et al., 2009; Li et al., 2012; Cheng et al., 2015; Chow et al., 2022). A steadily decreasing trend was 
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observed in the concentration levels of typical vehicular emission tracers: EC and hopanes. Over the ten-year period, annual 

average EC and hopanes decreased by 60% and 75% in mass concentration and at a rate of -0.17 µgC m-3 yr-1 and -0.052 ng 380 

m-3 yr-1, respectively. These significant reductions indicate the effectiveness of an array of control measures that have been 

implemented by the government since 2008 (Figure 8). Most notably, they include: (1) replacing pre-Euro IV diesel 

commercial vehicles with higher Euro standards vehicles since 2007, (2) implementing the Statutory Ban against idling of 

motor vehicle engines in 2011, and (3) the imposition of the emission control for petrol and LPG vehicles in 2014.  It is worth 

noting that the vehicular traffic local to the sampling site has increased by~20% over the decade if we use the traffic flow 385 

count through Shing Mun Tunnel, a tunnel less than 5 km away from the site, as an indicator (Figure S3). Despite the increase 

of vehicles on the road, the decrease of ambient EC and hopanes is unambiguous, which serves as strong evidence for the 

effectiveness of vehicular emission controls. On a separate yet relevant note, Wang et al. (2018) sampled and compared both 

gaseous and particulate pollutants from fresh vehicular emissions in Shing Mun Tunnel in 2003 and 2015 and found that OM 

and EC decreased by -70% and -80% from 2003 to 2015, respectively. This adds another measurement-based evidence for the 390 

overall decrease in PM2.5 burden from local vehicular emissions. 

The concentration levels of shipping emission tracers (V and Ni) were reduced by 34% and 36% by mass concentration 

and at a rate of -0.60 and -0.29 ng m-3 yr-1, respectively. The percent reduction of V and Ni is less than those of vehicular 

emission tracers because their decreasing trends were not obvious until 2015 (Section S5) when shipping emission control 

policy was first introduced in Hong Kong to reduce SO2 emission (HKEPD, 2021).  395 

 

Figure 8. Ten-year variation of monthly EC concentration. The significant vehicular emission control measures implemented in Hong Kong 
are indicated in the top plot.  

3.6 Species significantly influenced by regional emission sources –Biomass burning, industrial/coal combustion, 
and dust sources 400 

Biomass burning, industrial/coal combustion, and dust are well-recognized regional sources that influence PM pollution 

in Hong Kong (e.g., Zhang et al., 2018; Chow et al., 2022). Our source apportionment study of PM2.5 at six sites in Hong Kong 

in 2015 show that the combined industrial and coal combustion accounted for 12-20%, biomass burning 2-13%, and dust 4-

8% of PM2.5 (Chow et al., 2022). The marker chemicals for these sources are among the chemical composition data monitored, 

allowing us to track the long-term trend of these sources.   405 

Levoglucosan, an abundant primary product formed during pyrolysis of cellulose, is a highly specific tracer of biomass 
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burning emissions (Simoneit et al., 1999). K+ is also abundantly emitted from biomass burning, especially crop residue burning. 

In studies without levoglucosan data, K+ is frequently used as a biomass burning tracer. However, K+ is a less specific tracer, 

due to contributions from other sources such as coal combustion, dust, and sea salt (e.g., Yu et al., 2018; Chow et al., 2022). 

The clustering analysis results show K+ and levoglucosan were moderately correlated and fell into two different clusters in the 410 

same group of regional origin (Figure 5). Comparing the 10-year variations of these two tracers, we found that their reduction 

extents differed significantly, with K+ at -60% and levoglucosan at -47% over the decade. When examined seasonally (Figure 

6 and Table 3), they showed more distinct differences. Specifically, wintertime K+ showed a definitive decline trend at a rate 

of -7.5% yr-1 (p<0.01) while the decline of wintertime levoglucosan (-3.9% yr-1) could not be discerned from zero according 

to the statistical test at p<0.05 (Table 3). The lack of a clear declining trend of wintertime levoglucosan could be visually 415 

verified in Figure 6. Further, both summertime K+ and levoglucosan did not show a clear decreasing trend either (Figure 6 or 

Table 3). The inconsistency between K+ and levoglucosan could be explained if one considers that they track different types 

of biomass burning (i.e., K+ more representative of burning crop residues high in K+ content vs. levoglucosan representative 

of burning of cellulose, thus all types of vegetative biomass including hill fires). The inconsistent trends between winter and 

summer could also be rationalized considering their different source regions, i.e., the PRD region and Northern China during 420 

the winter vs. South Asia in the summertime. Overall, the chemical tracer data indicates crop residue burning has been reduced 

over the decade, perhaps indicating some success in measures such as prohibiting crop burning and crop straw utilization 

recently implemented in China (Ren et al., 2019). The lack of a consistent declining trend in levoglucosan, on the other hand, 

implies that biomass burning remains largely uncontrolled and would continue to be a significant PM pollution source.    

The three metal species, Pb, Zn and Cu, have been consistently detected in the PM2.5 samples over the decade, providing 425 

opportunities to probe their associated sources. The three display a strong seasonal contrast, with wintertime concentration 

levels more than twice those in the summer for Cu and Zn and five times for Pb. The strong seasonality is a characteristic 

indication for their regional/super-regional origin, in consistent with the cluster analysis results (Figure 5).  

Cu and Zn are associated with metal processing industries. Over the decade, the Zn level in the winter has been dropping 

steadily, at a rate of -6.6% per year while the wintertime Cu dropped at a rate of -5.8% per year. On the other hand, their 430 

summertime change rates were indiscernible from zero (Figure 6 and Table 3). Cumulatively, from 2008 to 2017, 

approximately 40% reduction was realized for these two metals (Table 2). The significant reductions were likely indicators of 

benefits from industrial upgrading following the promulgation and implementation of Guangdong "double transfer" policy 

(industry and labor transfer away from primary industries) since 2009 (Zhong et al., 2013; Yang et al., 2017). 

Pb is likely dominated by coal combustion. This source deduction is derived from data collected from a different project, 435 

in which we deployed an online XRF spectrometer to monitor hourly concentrations of As, Se, and Pb in Hong Kong from 

August 2019 to February 2021. The data show strong correlations of Pb with As and Se (R>0.80) (Figure S7), two well-known 

tracers for coal combustion (Tian et al., 2010), providing compelling supporting evidence for coal combustion as a dominant 

source for Pb. Over the decade, wintertime Pb has displayed a continuous dropping trend at a rate of -7.7% per year, implying 

effectiveness in reducing coal combustion emissions in the PRD region and in Northern China. It is also worth noting in the 440 

last three years (2015-2017) of the study decade the reduction of the three metals stalled, suggesting that more stringent actions 

are needed for further reduction in the upcoming years.   

Al and Si are classical marker elements for dust particles. They have also decreased over the decade, by -37% for Al and 

-46% for Si. The two elements are highly correlated, reflecting their common material sources and spatial origins. They display 

a distinct seasonality common to the regional sources, i.e., wintertime abundance is notably higher than the summertime. The 445 

decreasing rates for wintertime concentrations (-5.3% yr-1 for Al and -7.0% yr-1 for Si) are more significant than the 

summertime in terms of both mass concentration and percentage change (Table 3). The decline became flat in 2016-2017 
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(Section S5), indicating that the current policies started to be less sufficient in reducing the dust contribution.  

3.7 El Niño-Southern Oscillation events 

A closer examination reveals that in the overall monotonic trend component (blue dotted line in Figure 4) of most PM 450 

species (PM2.5, SO4
2-, NO3

-, etc.), 2011 is an anomaly year showing higher concentrations than the preceding and the 

succeeding years. This resemblance in patterns across the various PM2.5 components implies that a macro-factor, for example, 

sporadic meteorological El Niño/La Niña events, might be at play in influencing the temporal variation.  

El Niño-Southern Oscillation (ENSO) events randomly occur during the irregular changes of oceanic temperature among 

tropical Pacific Ocean, with El Niño events associated with increase in ocean temperature and La Niña events associated with 455 

decrease in ocean temperature. During the events, atmospheric pressure above the Pacific Ocean changes and thus causes the 

shift of Walker Circulation as well as the distortion of pollutant airflow towards Hong Kong (Yim et al., 2019). The El Niño 

effect typically leads to a rise in rainfall, less northerly/north-easterly winds, and higher wind speed in Hong Kong (Wang et 

al., 2019; Yim et al., 2019), thus enhancing the dispersion of regional pollutants. The La Niña effect is associated with opposite 

changes in rainfall and wind, thus impeding the dispersion of air pollutants.  Over the decade, there were two El Niño and 460 

three La Niña events that lasted for at least 2 months. The strength of ENSO can be classified by the Nino 3.4 index based on 

the averaged sea surface temperature (SST) anomalies in the Pacific Ocean region. This classification scheme results in five 

broad groups (Table S6), that is, neutral (0-0.49), weak (0.5-0.99), moderate (1-1.49), strong (1.5-1.99), and very strong (≥ 2) 

(the numbers in the parentheses indicate the SST anomaly). The rainfall, wind direction, and wind speed at TW under each 

level of ENSO events were compared with those on the normal days (i.e., neutral event) and summarized in Figures 9 and S12.  465 

The rainfall during all El Niño events was close to that during neutral conditions in Hong Kong but there was a notable 

reduction of rainfall during strong La Niña events. In terms of wind conditions, more westerly air masses (wind direction > 

180o) were transported during very strong El Niño and moderate to strong La Niña events, while the elevated wind speed 

generally occurred during weak to moderate El Niño events. 

 470 

 
Figure 9. The temporal variation in strength of ENSO events in 2008-2017 period (top), and the changes of rainfall (bottom) under different 
strength levels of ENSO events.   

The changes in meteorological conditions were hard to be visualized and quantified. To better investigate the effect of 

ENSO in Hong Kong, a multiple linear regression (MLR) was established between the observed concentrations and a list of 475 

meteorological variables including temperature (Temp), RH, seasonal components, and ENSO events, as shown in Eq. (4). For 

simplicity, the definitions of seasons here are based on calendar months, with spring corresponding to March-April, summer 
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May-August, fall September-October, and winter November-February. 

𝑋௠ =  𝛽ଵ 𝑌𝑒𝑎𝑟௠ +  𝛿ଵ𝑆𝑒𝑎𝑠𝑜𝑛௠ +  𝛽ଶ 𝑇𝑒𝑚𝑝௠ +  𝛽ଷ𝑅𝐻 + 𝛿ଶ𝐸𝑁𝑆𝑂  (4) 

where Xm is the monthly averaged time series, β’s are the coefficients of parametric variables (i.e., Year, Temperature, RH), 480 

and δ’s are the coefficients of two dummy variables (i.e., season and ENSO event).   

This MLR equation is able to explain additional variance by the ENSO variables (0.63 – 11.7%) without any 

multicollinearity issue (i.e., generalized variance inflation factor < 5). The prediction from this model is reasonable, producing 

a slope of ~ 0.8 and R values of 0.58 – 0.86. Briefly, the coefficients for the year (β1’s) capture the decline of species and 

approximately match the GLS-ARMA results. Seasonal variations were successfully reflected by the coefficients for season 485 

(δ’s), temperature (β2), or RH (β3). For example, positive summer coefficients in V/Ni indicate higher-in-summer, negative 

spring coefficients in levoglucosan indicate higher-in-winter, negative temperature coefficients in NO3
_/hopanes indicate 

stronger gas-particle partition or degradation.  

The random ENSO events impose different impacts on gaseous and particle pollutants. Significant enhancement of SO2 

and NOx (i.e., p-value of  𝛿ଶ,௅௔ ௡௜௡෤௔< 0.05) was found owing to the La Niña effect while no changes was observed for O3. On 490 

the contrary, significant and positive coefficients of the strong La Niña effect were obtained for all PM2.5 pollutants except V 

and Ni. The coefficient was particularly high and positive for some (SO4
2-, NO3

-, NH4
+, OC & levoglucosan, 𝛿ଶ,ௌ௧௥௢௡௚ ௅௔ ௡௜ ෤௔ 

from 1.6 to 61) but less for some regional source species (Pb, Cu, 𝛿ଶ,ௌ௧௥௢௡௚ ௅௔ ௡௜௡෤௔ from 0.0089 to 0.029). In other words, the 

concentration of those species was typically high under strong La Niña events in comparison with neutral days. This could be 

explained by the significantly suppressed rainfall during the strong La Niña event (Figure 9), where the highly water-soluble 495 

ions and levoglucosan were removed to a lesser extent via wet deposition and thus maintained higher concentrations than the 

normal days. Regardless of the significant level of coefficients, the El Niño effects are generally opposite to the La Niña effect, 

implying that the enhancement of pollution dispersion/deposition could happen during El Niño events (Table S7). 

Table 4. Summary of the multiple linear regression of the time series of gaseous and particles pollutants.  

Species 
Coefficients1 

Year Spring Summer Fall Temp RH 
Strong 
La Niña 

Gaseous pollutants 
CO +21*** +3.1 +21 +96 -35*** +4.6 +21 
SO2 -0.87*** +2.1 +4.2 +0.059 -0.2 -0.08 +4.4* 
NOx -3.1*** +17*** +14* -0.35 -3.3*** +0.62* +11 
O3 +1.2*** +6.8* -3.8 +13** +0.36 -0.92*** -0.69 
Particle pollutants 
PM2.5 -0.93*** +6.5** +1.1 +7.3* -0.82* -0.77*** +16*** 
SO4

2- -0.19 +2.8** +0.16 +3.9** -0.14 -0.2*** +3.4* 
NO3

- -0.16*** +0.58* +0.51 +0.24 -0.15*** -0.021 +2.1*** 
NH4

+ -0.06 +0.97** +0.39 +1.5** -0.15** -0.071*** +1.6** 
Al -10*** +50  -35  +15  +3.3  -7*** +120** 
Si -19** +96  -54  +8.5  +9.7  -17*** +330*** 
Va -0.71* +16*** +14** +3.3  -0.051  +0.31  +5.6  
Nia -0.29** +4.1*** +3.4** +1  -0.031  +0.057  +1.7  
Pb -2.7*** +3.1  -4.6  +7.7  -1.1  -2.3*** +29*** 
Zn -5.3  +29  -39  +7.9  -0.56  -6.1*** +73  
Cu -0.8** +4.6  -0.47  +2.7  -0.43  -0.71*** +8.9* 
K+ -27*** -23  -82  -6.4  -11  -13*** +220** 
OC -0.079 +0.27 -0.77 +0.088 -0.11 -0.21*** +3.3*** 
EC -0.15*** +0.19 +0.31 -0.025 +0.0003 -0.0091 +0.74** 
Hopanes2 -0.045*** +0.069 +0.012 -0.078 -0.022* +0.0069* +0.26** 
Levoglucosan2 +0.64 -32*** -12 -4.1 -4.6*** -1.9*** +61*** 

1Asterisks denote the coefficient of each variable significantly different from zero: * p < 0.05, ** p <0.01, *** p <0.001; coefficients of high 500 
significance are marked in bold. 2The concentration unit of the labelled species is ng/m3 and the unit of the other species is g/m3. 
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4. Conclusions 

In this study, we analyzed the 10-year (2008-2017) time series of PM2.5, its major components, and select source markers 

in an urban site in Hong Kong by the STL-GLS-ARMA method. The data set were obtained by following a regular 1-in-6-day 

sampling schedule that ensures temporal representativeness and adheres to well-established chemical speciation analysis 505 

protocols adopted by the USEPA. In addition, organic molecule maker compounds (i.e., levoglucosan and hopanes) were also 

measured for this 10-year sample set. Such a long time series of PM2.5 chemical composition data derived using a consistent 

sampling and analysis methodology are rare in China and elsewhere in Asia, thus providing uniquely valuable data to support 

studies of control measure evaluation and formulation for the region and offering a useful reference for other provinces in 

China in evaluating emission control policies. 510 

All PM2.5 components were found reduced, with the overall PM2.5 mass dropping at -1.5 μg m-3 yr-1 and by a cumulative 

rate of 40% (from 37.5 to 22.4 µg m-3). The individual contributors to the PM2.5 reduction are sulfate (-0.36 μg m-3 yr-1), OM 

(-0.25 μg m-3 yr-1), nitrate and EC (each at -0.17 μg m-3 yr-1), ammonium (-0.12 μg m-3 yr-1), and others (-0.39 μg m-3 yr-1). A 

disproportional reduction was noted between the precursor gases SO2 (-62%) and NOx (-36%), and their secondary products 

SO4
2- (-40%) and NO3

- (-66%) because of the complexity in their formation chemistry and formation process spatial scale not 515 

confined locally to Hong Kong. A steadily declining trend in EC and hopanes was recorded, achieving a cumulative decrease 

of 60% and 75%, respectively, in their ambient concentrations. These reductions verify the effectiveness of a series of control 

measures to reduce vehicular emissions by the Hong Kong government. In comparison, the reduction of OC was much modest, 

at 23%, which reflects the many more contributing sources as well as important secondary formation contribution to OC.  

Two biomass burning tracers, K+ and levoglucosan, displayed strong seasonality in both ambient abundance and 10-year 520 

variation trend, as the PRD and Northern China being the source region in the wintertime while South Asia being the source 

region in the summertime. Wintertime K+ showed a definitive decline trend at a rate of -7.5% yr-1 and a cumulative -60% 

reduction while the decline of wintertime levoglucosan was hardly discernable from zero. In the summertime, neither K+ nor 

levoglucosan showed a clear decreasing trend. The two tracers track different types of biomass burning, with K+ more 

representative of crop residue burning while levoglucosan tracking burning of cellulose. Collectively, the biomass burning 525 

tracers indicate that crop straw burning has been reduced over the decade but biomass burning remains a largely uncontrolled 

regional/super-regional PM2.5 sources for Hong Kong. 

The 10-year data of Zn, Cu, and Pb showed a cumulative reduction of -40%, -43%, and -60%, respectively. All three 

metals had strong seasonality, with winter concentrations much higher than the summertime, as metal processing 

industries/coal combustion from the GBA region and Northern China as the source regions. Their significant reductions in 530 

wintertime (-6.6%, -5.8%, and -7.7% yr-1 for Zn, Cu, and Pb, respectively) suggested benefits from measures such as industrial 

upgrading, coal combustion emission reduction that were implemented over the decade. The reduction for all three metals in 

the last three years (2015-2017) had stalled, signaling new measures are needed for their further reduction. Dust in Hong 

Kong’s PM2.5 mainly comes from regional contribution.  The dust components in PM2.5 decreased, by-37% for Al and -46% 

for Si, over the decade, indicating success in controlling dust generation activities in the region. 535 

 Finally, the long-time series reveals that 2011 is an anomaly year in that most PM2.5 components were elevated above the 

adjacent years. By establishing a multiple linear regression model, we show that the heightened strong La Niña events in 2011 

resulted in unusually low rainfall, which in turn reduced the removal via wet deposition of aerosol constitutes. In concluding, 

the long-term chemical speciation data of PM2.5 starting as early as 2008 in Hong Kong, one of the important cities in the Great 

Bay Area, could be useful for a multitude of purposes related to understanding decadal-scale atmospheric composition change 540 

and evaluating significant control policies for the region and the nation. 

https://doi.org/10.5194/acp-2022-100
Preprint. Discussion started: 7 March 2022
c© Author(s) 2022. CC BY 4.0 License.



21 
 

Data availability. Measurement data used in this study are available in the data repository maintained by HKUST 
https://doi.org/10.14711/dataset/EHHRBZ (Yu et al., 2022). 

Author contribution. WSC and JZY formulated the overall design of the study. WSC, KFL, and XHHH carried out the chemical 
analyses for tracers and key major components and data validation. WSC analyzed the data with contributions from KL, 545 
AKHL, and JZY. WSC and JZY prepared the manuscript with contributions from all co-authors. 

Competing interests. The authors declare that they have no conflict of interest. 

Disclaimer. The content of this paper does not necessarily reflect the views and policies of the HKSAR Government, nor does 
mention of trade names or commercial products constitute an endorsement or recommendation of their use.  

Acknowledgements. We thank Hong Kong Environmental Protection Department (HKEPD) for making part of PM2.5 550 
compositional data available for this work. This work is supported by Environment and Conservation Fund (ECF99/2017). 

References 

Anttila, P. and Tuovinen, J.: Trends of primary and secondary pollutant concentrations in Finland in 1994-2007, Atmos. 
Environ., 44, 30-41, doi:10.1016/j.atmosenv.2009.09.04, 2010. 

Bigi, A. and Ghermandi, G.: Long-term trend and variability of atmospheric PM10 concentration in the Po Valley, Atmos. 555 
Chem. Phys., 14, 4895-4907, doi:10.5194/acp-14-4895-2014, 2014. 

Chen, Z., Chen, D., Wen, W., Zhuang, Y., Kwan, M .P., Chen, B., Zhao, B., Yang, L., Gao, B., Li, R.,  and Xu, B.: Evaluating the 
“2+ 26” regional strategy for air quality improvement during two air pollution alerts in Beijing: variations in PM2.5 concentrations, 
source apportionment, and the relative contribution of local emission and regional transport, Atmos. Chem. Phys., 19, 6879-6891, 
doi:10.5194/acp-19-6879-2019, 2019. 560 

Chen, W., Chen, Y., Huang, Y., Lu, X., Yu, J. Z., Fung, J. C. H., Lin, C., Yan, Y., Peng, L., Louie, P. K. K., Tam, F. C. V., 
Yue, D., Lau, A. K. H., and Zhong, L.: Source apportionment of fine secondary inorganic aerosol over the Pearl River Delta 
region using a hybrid method, Atmos. Poll. Res, 12(5), 101061, doi:10.1016/j.apr.2021.101061, 2021. 

Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J. C., Watson, J. G., Cao, J., and Zhang, R.: PM2.5 and PM10-

2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96-104, 565 
doi:10.1016/j.partic.2013.10.003, 2015.   

Cheung, H., Wang, T., Baumann, K., and Guo, H.: Influence of regional pollution outflow on the concentrations of fine 
particulate matter and visibility in the coastal area of southern China, Atmos. Environ., 39, 6463-6474, 
doi:10.1016/j.atmosenv.2005.07.033, 2005. 

Chin, P. C.: Climate and weather. In: Chiu, T. N. and So, C. L. (Eds.), A Geography of Hong Kong. Oxford University Press, 570 
New York, 69-85, 1986. 

Chow, J. C. and Watson, J. G.: Guideline on Speciated Particulate Monitoring, prepared for the United States Environmental 
Protection Agency, Available at http://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdf, 1998. 

Chow, J. C., Watson J. G., Chen, L. W., Chang, M. C., Robinson, N. F., Trimble, D., and Kohl S.: The IMPROVE_A 
temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J. Air Waste 575 
Manage., 57, 1014-1023, doi:10.3155/1047-3289.57.9.1014, 2007. 

Chow, J. C, Watson, J. G., Cropper, P. M., Wang, X. L., and Kohl, S. D.: Measurements and validation for the twelve-months 
particulate matter study in Hong Kong, 2015, available at: 
https://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html, 2016. 

Chow, W. S., Huang, X. H. H., Leung, K. F., Huang, L., Wu, X., and Yu, J. Z.: Molecular and elemental marker-based source 580 
apportionment of fine particulate matter at six sites in Hong Kong, China. Sci. Total Environ., 813, 152652, 
doi:10.1016/j.scitotenv.2021.152652, 2022. 

Cleveland, R. B., Cleveland, W. S., and Terpenning, I.: STL: A seasonal-trend decomposition procedure based on loess. J. 
Off. Stat., 6, 3, 1990. 

Dao, X., Lin, Y. C., Cao, F., Di, S. Y., Hong, Y., Xing, G., Li, J., Fu, P., and Zhang, Y. L.: Introduction to the national aerosol 585 
chemical composition monitoring network of China: Objectives, current status, and outlook. Bull. Am. Meteorol. Soc., 10, ES337-
ES351, doi:10.1175/BAMS-D-18-0325.1, 2019. 

https://doi.org/10.5194/acp-2022-100
Preprint. Discussion started: 7 March 2022
c© Author(s) 2022. CC BY 4.0 License.



22 
 

Fu, X., Wang, X. M., Guo, H., Cheung, K., Ding, X., Zhao, X., He, Q., Gao, B., Zhang, Z., Liu, T., and Zhang, Y.: Trends of ambient 
fine particles and major chemical components in the Pearl River Delta region: observation at a regional background site in fall and 
winter, Sci. Total Environ., 497-498, 274-281, doi:10.1016/j.scitotenv.2014.08.008, 2014. 590 

Griffith, S. M., Huang, X. H. H., Louie, P. K. K., and Yu, J. Z.: Characterizing the thermodynamic and chemical composition 
factors controlling PM2.5 nitrate: Insights gained from two years of online measurements in Hong Kong. Atmos. Environ., 122, 
864-875, doi:10.1016/j.atmosenv.2015.02.009, 2015. 

Guo, H., Ding, A. J., So, K. L., Ayoko, G., Li, Y. S., and Hung, W. T.: Receptor modeling of source apportionment of Hong 
Kong aerosols and the implication of urban and regional contribution, Atmos. Environ., 43, 1159-1169, 595 
doi:10.1016/j.atmosenv.2008.04.046, 2009.  

HKEPD (Hong Kong Environmental Protection Department): 2017 Hong Kong emission inventory report. Available at: 
https://www.epd.gov.hk/epd/sites/default/files/epd/data/2017_Emission_Inventory_Report_Eng.pdf, 2019. 

HKEPD, (Hong Kong Environmental Protection, Department): Guangdong-Hong Kong-Macao Pearl River Delta regional air 
quality monitoring network - A report of monitoring results in 2019. Environmental Protection Department the Government 600 
of the Hong Kong Special Administrative Region, 1-38, 2020. 

HKEPD (Hong Kong Environmental Protection Department): A concise guide to the air pollution control ordinance, Available 
at: https://www.epd.gov.hk/epd/english/environmentinhk/air/guide_ref/guide_apco.html#introduction, 2021. 

Ho, S. S. H. and Yu, J. Z.: In-injection port thermal desorption and subsequent gas chromatography–mass spectrometric 
analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples, J. Chromatogr. A, 1059, 121-129, 605 
doi:10.1016/j.chroma.2004.10.013, 2004.  

Ho, S. S. H., Yu, J. Z., Chow, J. C., Zielinska, B., Watson, J. G., Sit, E. H. L., and Schauer, J. J.: Evaluation of an in-injection 
port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in 
ambient aerosol samples, J. Chromatogr. A, 1200, 217-227, doi:10.1016/j.chroma.2008.05.056, 2008. 

Huang, X. H. H., Bian, Q., Ng, W. M., Louie, P. K. K., and Yu, J. Z.: Characterization of PM2.5 major components and source 610 
investigation in suburban Hong Kong: A one year monitoring study, Aerosol Air Qual. Res., 14, 237-250, 
doi:10.4209/aaqr.2013.01.0020, 2014.   

Kim, Y. J., Kim, K. W., Kim, S. D., Lee, B. K., and Han, J. S.: Fine particulate matter characteristics and its impact on visibility 
impairment at two urban sites in Korea: Seoul and Incheon, Atmos. Environ., 40, 593-605, 
doi:10.1016/j.atmosenv.2005.11.076, 2006. 615 

Ko, F. W. S., Tam, W., Wong, T. W., Lai, C. K. W., Wong, G. W. K., Leung, T., Ng, S. S. S., and Hui, D. S. C.: Effects of air 
pollution on asthma hospitalization rates in different age groups in Hong Kong, Clin. Exp. Allergy, 37, 1312-1319, 
doi:10.1111/j.1365-2222.2007.02791.x, 2007. 

Kuang, B. Y., Lin, P., Huang, X. H. H., and Yu, J. Z.: Sources of humic-like substances in the Pearl River Delta, China: 
positive matrix factorization analysis of PM2.5 major components and source markers, Atmos. Chem. Phys. 15, 1995–2008, 620 
doi:10.5194/acp-15-1995-2015, 2015. 

Lang, J., Zhang, Y., Zhou, Y., Cheng, S., Chen, D., Guo, X., Chen, S., Li, X., Xing, X., and Wang, H.: Trends of  PM2.5 and chemical 
composition in Beijing, 2000–2015, Aerosol Air Qual. Res., 17, 412–425, doi:10.4209/aaqr.2016.07.0307, 2017. 

Li, Y. J., Yeung, J. W. T., Leung, T. P. I., Lau, A. P. S., and Chan, C. K.: Characterization of organic particles from incense 
burning using an aerodyne high-resolution time-of-flight aerosol mass spectrometer, Aerosol Sci. Technol., 46, 654-665, 625 
doi:10.1080/02786826.2011.653017, 2012. 

Lippmann, M. and Chen, L.: Health effects of concentrated ambient air particulate matter (CAPs) and its components, Crit. 
Rev. Toxicol., 39, 865-913, doi:10.3109/10408440903300080, 2009. 

Lu, Q., Zheng, J., Ye, S., Shen, X., Yuan, Z., and Yin, S.: Emission trends and source characteristics of SO2, NOx, PM10 and 
VOCs in the Pearl River Delta region from 2000 to 2009, Atmos. Environ., 76, 11-20, doi: 10.1016/j.atmosenv.2012.10.062, 630 
2013. 

Molugaram, K. and Rao, G. S.: Chapter 12 - Analysis of time series, in: Statistical Techniques for Transportation Engineering, 
Molugaram, K. and Rao, G.S. (Eds.), Butterworth-Heinemann, 463-489, doi:10.1016/B978-0-12-811555-8.00012-X, 2017. 

Ren, J., Yu, P., and Xu, X: Straw utilization in China—status and recommendations. Sustainability, 11, 1762, 
doi:10.3390/su11061762, 2019. 635 

Shumway, R. H. and Stoffer, D. S.: Time series analysis and its applications: With R examples. Springer, New York, 2017. 

Simoneit, B. R., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R.: 
Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ., 33, 173-182, 
doi:10.1016/S1352-2310(98)00145-9, 1999. 

Singh, V., Singh, S., and Biswal, A.: Exceedances and trends of particulate matter (PM2.5) in five Indian megacities, Sci. Total 640 
Environ., 750, 141461, doi:10.1016/j.scitotenv.2020.141461, 2021. 

https://doi.org/10.5194/acp-2022-100
Preprint. Discussion started: 7 March 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

Tan, J., Duan, J., Ma, Y., He, K., Cheng, Y., Deng, S. X., Huang, Y. L., and Si-Tu, S. P.: Long-term trends of chemical characteristics 
and sources of fine particle in Foshan City, Pearl River Delta: 2008–2014, Sci. Total Environ., 565, 519-528, 
doi:10.1016/j.scitotenv.2016.05.059, 2016. 

Tian, H. Z., Wang, Y., Xue, Z. G., Cheng, K., Qu, Y. P., Chai, F. H., and Hao, J. M.: Trend and characteristics of atmospheric 645 
emissions of Hg, As, and Se from coal combustion in China, 1980–2007, Atmos. Chem. Phys., 10, 11905–11919, 
doi:10.5194/acp-10-11905-2010, 2010.  

USEPA (United State Environmental Protection Agency): Quality assurance guidance document 2.12 - monitoring PM2.5 in 
ambient air using designated reference or class I equivalent methods. Available at: 
https://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/m212.pdf, 2016. 650 

Wang, X., Ho, K., Chow, J. C., Kohl, S. D., Chan, C. S., Cui, L., Lee, S. F., Chen, L. A., Ho, S. S. H., Cheng, Y., and Watson, 
J. G.: Hong Kong vehicle emission changes from 2003 to 2015 in the Shing Mun tunnel, Aerosol Sci. Technol.,52, 1085-1098, 
doi:10.1080/02786826.2018.1456650, 2018. 

Wang, X., Zhong, S., Bian, X., and Yu, L.: Impact of 2015–2016 El niño and 2017–2018 la niña on PM2.5 concentrations 
across China. Atmos. Environ., 208, 61-73, doi:10.1016/j.atmosenv.2019.03.035, 2019. 655 

Watson, J. G., Chow, J. C., and Frazier, C. A.: X-ray fluorescence analysis of ambient air samples, in: Landsberger, S., 
Creatchman, M. (Eds.), Elemental Analysis of Airborne Particles, Vol. 1. Gordon and Breach Science, Amsterdam, The 
Netherlands, 67- 96, 1999. 

World Health Organization: WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, 
sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329, 2021. 660 

Wilcox, R.: Chapter 10 - Robust regression., in: Introduction to Robust Estimation and Hypothesis Testing (4th Edition), 
Wilcox, R. (Ed.), Academic Press, 517-583, doi:10.1016/B978-0-12-804733-0.00010-X, 2018. 

Xue, J., Yuan, Z., Yu, J. Z., and Lau, A. K. H.: An observation-based model for secondary inorganic aerosols. Aerosol Air 
Qual. Res., 14(3), 862-878, doi:10.4209/aaqr.2013.06.0188, 2014a. 

Xue, J., Yuan, Z., Lau, A. K. H., and Yu, J. Z.: Insights into factors affecting nitrate in PM2.5 in a polluted high NOx 665 
environment through hourly observations and size distribution measurements. J. Geophys. Res. Atmos., 119, 4888-4902, 
doi:10.1002/2013JD021108, 2014b. 

Xue, J., Yu, X., Yuan, Z., Griffith, S. M., Lau, A. K. H., Seinfeld, J. H., and Yu, J. Z.: Efficient control of atmospheric sulfate 
production based on three formation regimes, Nat. Geosci., 12, 977-982, doi:10.1038/s41561-019-0485-5, 2019. 

Yang, J. and Zhu, S. Effect of industrial transfer policy on the evolution of regional product structure: Based on the “Double 670 
Transfer” policy in Guangdong Province. Trop. Geogr. 37, 452–461, doi:10.13284/j.cnki.rddl.002971, 2017. 

Yang, Y., Tang, R., Qiu, H., Lai, P., Wong, P., Thach, T., Allen, R., Brauer, M., Tian, L., and Barratt, B.: Long term exposure 
to air pollution and mortality in an elderly cohort in Hong Kong, Environ. Int., 117, 99-106, doi:10.1016/j.envint.2018.04.034, 
2018. 

Yim, S. H. L., Hou, X., Guo, J., and Yang, Y.: Contribution of local emissions and transboundary air pollution to air quality 675 
in Hong Kong during El niño-Southern Oscillation and heatwaves, Atmos. Res., 218, 50-58, 
doi:10.1016/j.atmosres.2018.10.021, 2019. 

Yu, J. Z. and Zhang, T.: Measurements and validation for the twelve-months particulate matter study in Hong Kong, 2016, available 
at: https://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html, 2017. 

Yu, J. Z. and Zhang, T.: Measurements and validation for the twelve-months particulate matter study in Hong Kong, 2017, available 680 
at: https://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html, 2018. 

Yu, J. Z., Tung, J. W. T., Wu, A. W. M., Lau, A. K. H., Louie, P. K. K., and Fung, J. C. H.: Abundance and seasonal 
characteristics of elemental and organic carbon in Hong Kong PM10, Atmos. Environ., 38, 1511-1521, 
doi:10.1016/j.atmosenv.2003.11.035, 2004. 

Yu, J. Z., Huang, X. H. H, and Ng, W. M.: Measurements and validation for the twelve-months particulate matter study in Hong 685 
Kong, 2011, available at: https://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html, 2012. 

Yu, J. Z., Huang, X. H. H., and Ng, W. M.: Measurements and validation for the twelve-months particulate matter study in Hong 
Kong, 2012, available at: https://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html, 2013. 

Yu, J. Z., Huang, X. H. H, Zhang, T., and Ng, W. M.: Measurements and validation for the twelve-months particulate matter study 
in Hong Kong, 2013, available at: https://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html, 2014. 690 

Yu, J. Z., Huang, X. H. H., Zhang, T., and Ng, W. M.: Measurements and validation for the twelve-months particulate matter study 
in Hong Kong, 2014, available at: https://www.epd.gov.hk/epd/english/environmentinhk/air/studyrpts/pm25_study.html, 2015. 

Yu, J., Yan, C., Liu, Y., Li, X., Zhou, T., and Zheng, M.: Potassium: A Tracer for Biomass Burning in Beijing? Aerosol Air 
Qual. Res., 18, 2447–2459, doi:10.4209/aaqr.2017.11.0536, 2018. 

Yu, J. Z., Chow, W. S., and Huang, X. H. H.: Ten-year (2008-2017) PM2.5 major components and select tracers at Tsuen Wan, 695 

https://doi.org/10.5194/acp-2022-100
Preprint. Discussion started: 7 March 2022
c© Author(s) 2022. CC BY 4.0 License.



24 
 

Hong Kong, doi:10.14711/dataset/EHHRBZ, DataSpace@HKUST, 2022. 

Yuan, Z., Yadav, V., Turner, J. R., Louie, P. K. K., and Lau, A. K. H.: Long-term trends of ambient particulate matter emission 
source contributions and the accountability of control strategies in Hong Kong over 1998–2008, Atmos. Environ., 76, 21-31, 
doi:10.1016/j.atmosenv.2012.09.026, 2013. 

Zhang, X., Yuan, Z., Li, W., Lau, A. K. H., Yu, J. Z., Fung, J. C. H., Zheng, J., and Yu, A. L. C.: Eighteen-year trends of local 700 
and non-local impacts to ambient PM10 in Hong Kong based on chemical speciation and source apportionment, Atmos. Res., 
214, 1-9, doi:10.1016/j.atmosres.2018.07.004, 2018. 

Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q., and Chen, L.: Characteristics and ship traffic source 
identification of air pollutants in China's largest port, Atmos. Environ., 64, 277-286, doi:10.1016/j.atmosenv.2012.10.007, 
2013. 705 

Zhong, L. J., Louie, P. K. K., Zheng, J. Y., Yuan, Z. B., Yue, D. L., Ho, J. W. K., and Lau, A. K. H.:  Science–policy interplay: 
air quality management in the Pearl River Delta region and Hong Kong. Atmos. Environ. 76, 3–10, 
doi:10.1016/j.atmosenv.2013.03.012, 2013. 

https://doi.org/10.5194/acp-2022-100
Preprint. Discussion started: 7 March 2022
c© Author(s) 2022. CC BY 4.0 License.


